Cambridge International AS \& A Level

CANDIDATE NAME

CENTRE
NUMBER

CANDIDATE NUMBER \square

CHEMISTRY

Paper 3 Advanced Practical Skills 2

You must answer on the question paper.
You will need: The materials and apparatus listed in the confidential instructions

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 40 .
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.
- Important values, constants and standards are printed in the question paper.
- Notes for use in qualitative analysis are provided in the
question paper.

For Examiner's Use	
1	
2	
3	
Total	

This document has 12 pages.

Quantitative analysis

Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.

Show the precision of the apparatus you used in the data you record.
Show your working and appropriate significant figures in the final answer to each step of your calculations.

1 You will investigate the enthalpy change of neutralisation, $\Delta H_{\text {neut, }}$, between aqueous sodium hydroxide of known concentration and a dilute organic acid. You will use your results to suggest the identity of the organic acid. The acid is a halogenocarboxylic acid containing one halogen atom, \mathbf{X}, per molecule.

$$
\mathrm{NaOH}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{CHXCOOH}(\mathrm{aq}) \rightarrow \mathrm{CH}_{3} \mathrm{CHXCOONa}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

FB 1 is $1.90 \mathrm{moldm}^{-3}$ sodium hydroxide, NaOH .
FB 2 is a solution containing $312.5 \mathrm{~g} \mathrm{dm}^{-3}$ of the organic acid $\mathrm{CH}_{3} \mathrm{CHXCOOH}$.

(a) Method

- Support the cup in the $250 \mathrm{~cm}^{3}$ beaker.
- Pipette $25.0 \mathrm{~cm}^{3}$ of FB 1 into the cup.
- Place the thermometer into FB 1. Record the temperature of FB 1 in Table 1.1. This is the temperature when the volume of FB 2 is $0.00 \mathrm{~cm}^{3}$.
- Fill the burette with FB 2.
- Run $5.00 \mathrm{~cm}^{3}$ of FB 2 into the cup containing FB 1.
- Stir the mixture. Record the highest temperature observed.
- Run further $5.00 \mathrm{~cm}^{3}$ portions of FB 2 into the same cup.
- On each addition of FB 2 stir the contents of the cup. Record the highest temperature after each addition.

Results

Table 1.1

total volume of FB 2 added $/ \mathrm{cm}^{3}$	0.00	5.00	10.00	15.00	20.00	25.00	30.00	35.00	40.00
temperature $/^{\circ} \mathrm{C}$									

[3]
(b) (i) Plot a graph of temperature (y-axis) against volume of FB 2 added (x-axis) on the grid. Select a scale on the y-axis to include a temperature of $2^{\circ} \mathrm{C}$ above your maximum thermometer reading. Label any points you consider to be anomalous.

Draw two lines of best fit, the first for the increase in temperature and the second for after the maximum temperature has been reached. Extrapolate the two lines so they intersect. This intersection corresponds to the volume of FB 2 required to form a neutral solution.

(ii) Use your graph to determine the volume of FB 2 required to neutralise $25.0 \mathrm{~cm}^{3}$ of FB 1 .

(c) Calculations

(i) Calculate the energy change, in J, when the volume of FB 2 recorded in (b)(ii) neutralises $25.0 \mathrm{~cm}^{3}$ of FB 1.
energy change $=$
(ii) Calculate the amount, in mol, of sodium hydroxide, FB 1, pipetted into the cup.

$$
\text { amount of } \mathrm{NaOH}=
$$

\qquad mol [1]
(iii) Calculate the enthalpy change of neutralisation, $\Delta H_{\text {neut, }}$ in kJmol^{-1}, for 1.00 mol of sodium hydroxide reacting with FB 2.

$$
\begin{equation*}
\Delta H_{\text {neut }}=\ldots \text { sign } \quad \mathrm{kJ} \mathrm{~mol}^{-1} \tag{1}
\end{equation*}
$$

(iv) Use your answers to (b)(ii) and (c)(ii) and the information given on page 2 to calculate the relative formula mass, M_{r}, of the organic acid $\mathrm{CH}_{3} \mathrm{CHXCOOH}$. Show your working.

$$
\begin{equation*}
M_{\mathrm{r}} \text { of } \mathrm{CH}_{3} \mathrm{CHXCOOH}= \tag{1}
\end{equation*}
$$

(v) The acid is known to be one of the following: $\mathrm{CH}_{3} \mathrm{CHFCOOH}, \mathrm{CH}_{3} \mathrm{CHClCOOH}$, $\mathrm{CH}_{3} \mathrm{CHBrCOOH}$ or $\mathrm{CH}_{3} \mathrm{CHICOOH}$.
Use your answer to (c)(iv) to identify the acid used to make solution FB 2.

The acid in FB 2 is

(vi) Calculate the percentage error in the relative formula mass, M_{r}, you calculated in (c)(iv).

2 A gravimetric procedure can identify the metal in many metal carbonates. You will decompose a metal carbonate, MCO_{3}, by heating to produce the metal oxide and carbon dioxide. You may assume this metal forms a stable metal oxide on heating. \mathbf{M} is not a transition metal.

$$
\mathrm{MCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{MO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

FB 3 is the metal carbonate MCO_{3}.

(a) Method

- Weigh the crucible with its lid. Record the mass.
- Add between 0.90 g and 1.10 g of FB 3 to the crucible.
- Weigh the crucible, lid and FB 3. Record the mass.
- Place the crucible on the pipe-clay triangle.
- Gently heat the crucible and contents for approximately 1 minute with the lid on.
- Remove the lid. Then heat the crucible and contents strongly for approximately 5 minutes.
- Replace the lid and leave the crucible to cool for at least 5 minutes.

While the crucible is cooling, you may wish to begin work on Question 3.

- When the crucible is cool, weigh the crucible with its lid and contents. Record the mass.
- Calculate and record the mass of FB 3 added to the crucible, the mass of residue obtained and the mass loss.

Keep the residue for use in 2(d).

Results

I	
II	
III	
IV	
V	

(b) Calculations

(i) Calculate the amount, in mol, of carbon dioxide lost on heating FB 3.

$$
\text { amount of } \mathrm{CO}_{2}=
$$ mol [1]

(ii) Use your answer to (b)(i) and your data from (a) to calculate the relative formula mass, $M_{\text {r }}$, of MCO_{3}.

$$
\begin{equation*}
M_{\mathrm{r}} \text { of } \mathrm{MCO}_{3}= \tag{1}
\end{equation*}
$$

(iii) Use your answer to (b)(ii) to suggest the identity of metal \mathbf{M}.

Show your working.

\mathbf{M} is

(c) A student carrying out the same experiment as in (a) spills a small quantity of solid just before carrying out the final weighing.
State what effect this would have on the value of the M_{r} that is calculated for MCO_{3}. Explain your answer.
\qquad
\qquad
\qquad
(d) Normally, in this experiment, you would reheat and reweigh the crucible and contents until the mass is constant to ensure all the metal carbonate has decomposed.
Suggest a chemical test to determine whether all the metal carbonate has decomposed.
Record your test, observation and conclusion.
test \qquad
observation \qquad
conclusion

Qualitative analysis

For each test you should record all your observations in the spaces provided.
Examples of observations include:

- colour changes seen
- the formation of any precipitate and its solubility (where appropriate) in an excess of the reagent added
- the formation of any gas and its identification (where appropriate) by a suitable test.

You should record clearly at what stage in a test an observation is made.
Where no change is observed you should write 'no change'.
Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.

If any solution is warmed, a boiling tube must be used.
Rinse and reuse test-tubes and boiling tubes where possible.
No additional tests should be attempted.

3 Half fill the $250 \mathrm{~cm}^{3}$ beaker with water and place it on a gauze on the tripod. Heat the water until boiling then switch off your Bunsen burner. This will be your hot water bath.
(a) FB 4, FB 5 and FB 6 are acids with the same concentration. Only one is an organic acid.
(i) Carry out the following tests and record your observations in Table 3.1. Use a 1 cm depth of FB 4, FB 5 or FB 6 in a test-tube for each test.

Table 3.1

test	observations		
	FB 4		FB 5
Test 1 Add 1 or 2 drops of acidified aqueous potassium manganate(VII), then			FB 6
place the test-tube in the hot water bath.			
Test 2 Add a few copper turnings and place the test-tube in the hot water bath for a few minutes.			
Test 3 Add a 1 cm strip of magnesium ribbon, then			
leave the test-tube lor 3 minutes and then shake the test-tube gently.			

(ii) Each of FB 4, FB 5 and FB 6 is one of the following acids: methanoic acid, nitric acid or sulfuric acid.
Use your observations to suggest the identity of each acid. Explain your answers.
FB 4 is \qquad .
explanation \qquad
\qquad

FB 5 is \qquad .
explanation \qquad
\qquad

FB 6 is \qquad .
explanation \qquad
\qquad
(b) The halogenocarboxylic acid in FB 2 was hydrolysed by heating with excess aqueous sodium hydroxide. The resulting solution is FB 7.
(i) Carry out a test to check the identity of the halogen atom present in FB 2.

Use a 1 cm depth of FB 7 in a test-tube for your test.
State your reagents and record your observations at each stage of your test.

From this test only, give the identity of the halogen present in FB 2.
The halogen is \qquad .
(ii) Give the equation for the hydrolysis reaction of the halogenocarboxylic acid, FB 2, with excess hot aqueous sodium hydroxide.
(If you were unable to identify the halogen in (b)(i), then use the formula $\mathrm{CH}_{3} \mathrm{CHXCOOH}$.)

Qualitative analysis notes

1 Reactions of cations

cation	reaction with	
	$\mathrm{NaOH}(\mathrm{aq})$	$\mathrm{NH}_{3}(\mathrm{aq})$
aluminium, $\mathrm{Al}^{3+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. insoluble in excess
ammonium, $\mathrm{NH}_{4}^{+}(\mathrm{aq})$	no ppt. ammonia produced on warming	-
barium, $\mathrm{Ba}^{2+}(\mathrm{aq})$	faint white ppt. is observed unless $\left[\mathrm{Ba}{ }^{2+}(\mathrm{aq})\right]$ is very low	no ppt.
calcium, $\mathrm{Ca}^{2+}(\mathrm{aq})$	white ppt. unless $\left[\mathrm{Ca}^{2+}(\mathrm{aq})\right]$ is very low	no ppt.
chromium(III), $\mathrm{Cr}^{3+}(\mathrm{aq})$	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess
copper(II), $\mathrm{Cu}^{2+}(\mathrm{aq})$	pale blue ppt. insoluble in excess	pale blue ppt. soluble in excess giving dark blue solution
iron(II), $\mathrm{Fe}^{2+}(\mathrm{aq})$	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess
iron(III), $\mathrm{Fe}^{3+}(\mathrm{aq})$	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess
magnesium, $\mathrm{Mg}^{2+}(\mathrm{aq})$	white ppt. insoluble in excess	white ppt. insoluble in excess
manganese(II), $\mathrm{Mn}^{2+}(\mathrm{aq})$	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess
zinc, $\mathrm{Zn}^{2+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. soluble in excess

2 Reactions of anions

anion	reaction
carbonate, $\mathrm{CO}_{3}{ }^{2-}$	CO_{2} liberated by dilute acids
chloride, $\mathrm{Cl}^{-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
bromide, $\mathrm{Br}^{-}(\mathrm{aq})$	gives cream/off-white ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (partially soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
iodide, $\mathrm{I}^{-}(\mathrm{aq})$	gives pale yellow ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (insoluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
nitrate, $\mathrm{NO}_{3}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil
nitrite, $\mathrm{NO}_{2}{ }^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil; decolourises acidified aqueous KMnO_{4}
sulfate, $\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (insoluble in excess dilute strong acids); gives white ppt. with high $\left[\mathrm{Ca}^{2+}(\mathrm{aq})\right]$
sulfite, $\mathrm{SO}_{3}{ }^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (soluble in excess dilute strong acids); decolourises acidified aqueous KMnO_{4}
thiosulfate, $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq})$	gives off-white/pale yellow ppt. slowly with H^{+}

3 Tests for gases

gas	test and test result
ammonia, NH_{3}	turns damp red litmus paper blue
carbon dioxide, CO_{2}	gives a white ppt. with limewater
hydrogen, H_{2}	'pops' with a lighted splint
oxygen, O_{2}	relights a glowing splint

4 Tests for elements

element	test and test result
iodine, I_{2}	gives blue-black colour on addition of starch solution

Important values, constants and standards

molar gas constant	$R=8.31 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
Faraday constant	$F=9.65 \times 10^{4} \mathrm{Cmol}^{-1}$
Avogadro constant	$L=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
electronic charge	$e=-1.60 \times 10^{-19} \mathrm{C}$
molar volume of gas	$V_{\mathrm{m}}=22.4 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ at s.t.p. $(101 \mathrm{kPa}$ and 273 K$)$ $V_{\mathrm{m}}=24.0 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ at room conditions
ionic product of water	$K_{\mathrm{w}}=1.00 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}\left(\right.$ at $\left.298 \mathrm{~K}\left(25^{\circ} \mathrm{C}\right)\right)$
specific heat capacity of water	$c=4.18 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}\left(4.18 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}\right)$

$\stackrel{8}{8}$	亏
®立镸気	
	\％¢
	® E
	8
	あ
	\％
	ェว
	इ
	\％「
的 $\frac{\square}{\text { ciem }}$	8 足管

To avoid the issue of disclosure of answer－related information to candidates，all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet．This is produced for each series of examinations and is freely available to download at www．cambridgeinternational．org after the live examination series．

